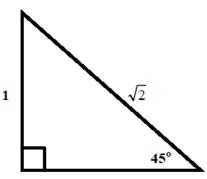
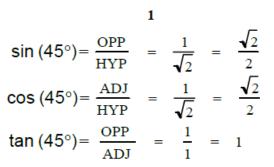

Trigonometry Fundamentals and the Unit Circle

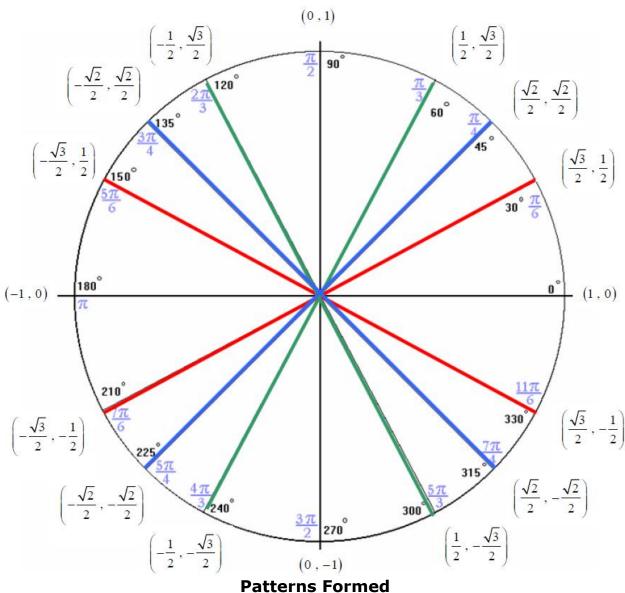
The six trigonometric functions sine, cosine, tangent, cosecant, secant, cotangent are derived from relationships with right triangles. Common values result from two right triangles:





SOH sin $\theta = \frac{OPP}{HVP}$

CAH cos $\theta = \frac{\text{ADJ}}{\text{HYP}}$


TOA $\tan \theta = \frac{\text{OPP}}{\text{ADJ}}$

"All Students Take Calculus"

A"		
	Students	All
PP	Sin positive sin: + cos: - tan: -	All positive sin: + cos: + tan: +
$\csc \theta = \frac{HYP}{HYP}$		
$\csc \theta = \frac{1}{OPP}$	Take	Calculus
IIVD	Tan positive	Cos positive
sec $\theta = \frac{HYP}{APA}$	Tan positive sin: -	Cos positive sin: -
sec $\theta = \frac{\text{HYP}}{\text{ADJ}}$		
	sin: -	sin: -
sec $\theta = \frac{\text{HYP}}{\text{ADJ}}$ cot $\theta = \frac{\text{ADJ}}{\text{OPP}}$	sin: - cos: -	sin: - cos: +

The Unit Circle – the center at the origin; a radius of 1. Coordinates of $(\cos\theta, \sin\theta)$

 $\frac{\pi}{6}$ $\frac{\pi}{4}$ π π 0 3 2 sin θ $\frac{\sqrt{1}}{2} = \frac{1}{2}$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{0}}{2} = 0$ $\frac{\sqrt{2}}{2}}{\sqrt{2}}$ $\frac{\sqrt{4}}{2} = 1$ $\frac{\frac{\sqrt{1}}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{2}$ $\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$ $\frac{\sqrt{4}}{2} = 1$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{0}}{2} = 0$ cosθ $\frac{0}{1} = 0$ $\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{\sqrt{2}}} = 1$ $\frac{1}{0} = DNE$ $\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$ tan heta

Notes on patterns:

Sin θ : start at 0 under the radical and increase to 4, simplify. Cos θ : start at 4 under the radical and decrease to 0, simplify. Tan θ : Sin θ / Cos θ ; simplify as appropriate. Changing signs as needed for each quadrant.