

Basic Trigonometric Graphs:

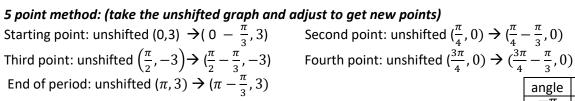
y = cos x	y = sin x	y = tan x	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{1.0}{0.5}$ π 2π	$-\pi$ $-\frac{\pi}{2}$ -2 2 π $-\frac{\pi}{2}$ -2 -4 -6	
y = sec x	y = csc x	y = cot x	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2π $-\pi$ -5 π -2π	$-\pi -\frac{\pi}{2} + \frac{2}{2} + \frac{\pi}{2} + \frac{\pi}{2}$	

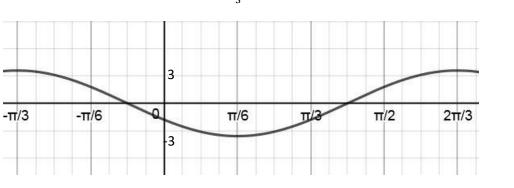
Standard Forms

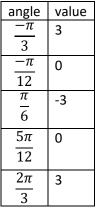
y = a sin k(x – b) +c	Amplitude= a	Period = $\frac{2\pi}{k}$, k > 0	Phase shift: b	Vertical shift: c
$y = a \cos k(x - b) + c$		k ^r		
$y = a \csc k(x - b) + c$	Not applicable	Period = $\frac{2\pi}{k}$, k > 0	Phase shift: b	Vertical shift: c
$y = a \sec k(x - b) + c$		k'		
y = a tan k(x – b) +c	Not applicable	Period = $\frac{\pi}{k}$, k > 0	Phase shift: b	Vertical shift: c
$y = a \cot k(x - b) + c$		k'		

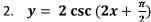
Examples (these show one period for each example)

1. $y = 3\cos(2x + \frac{2\pi}{\pi^3})$: put it into the standard form by factoring out the 2 that is with the x. This gives: $y = 3\cos 2(x + \frac{\pi}{3})$: Amplitude $\rightarrow 3$, Period $\rightarrow \frac{2\pi}{2} = \pi$ so would divide graph into $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$ and π . Phase shift $\rightarrow \frac{-\pi}{3}$ (to the left)



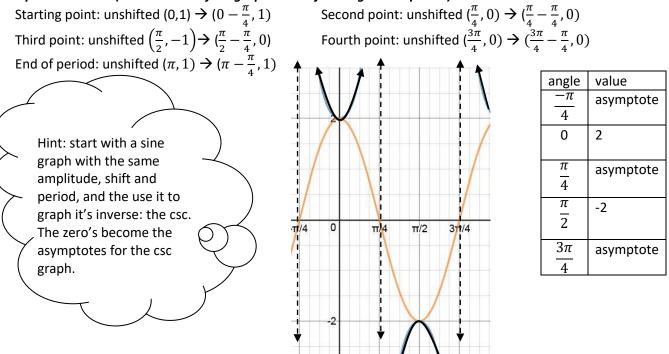






put it into the standard form by factoring out the 2 that is with the x. This gives: $y = 2 \csc 2 \ (x + \frac{\pi}{4})$; period = $\frac{2\pi}{2} = \pi$ so would divide graph into $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$ and π . Phase shift $\rightarrow \frac{-\pi}{4}$ (to the left)

5 point method: (take the unshifted graph and adjust to get new points)



3. $y = \tan(x - \frac{\pi}{4})$

Period: no change since k = 1 $\rightarrow \pi$ so divide the graph into increments of $\frac{\pi}{4}$ like normal. Phase shift $\rightarrow \frac{\pi}{4}$

5 point method: (take the unshifted graph and adjust to get new points)

Starting point: unshifted $(\frac{-\pi}{2}, -\infty) \rightarrow (\frac{-\pi}{2} + \frac{\pi}{4}, -\infty)$ Second point: unshifted $(-\frac{\pi}{4}, -1) \rightarrow (-\frac{\pi}{4} + \frac{\pi}{4}, -1)$ Third point: unshifted $(0, 0) \rightarrow (0 + \frac{\pi}{4}, 0)$ Fourth point: unshifted $(\frac{\pi}{4}, 1) \rightarrow (\frac{\pi}{4} + \frac{\pi}{4}, 1)$ End of period: unshifted $(\frac{\pi}{2}, +\infty) \rightarrow (\frac{\pi}{2} + \frac{\pi}{4}, +\infty)$

angle	value	
$-\pi$	-∞	
4		
0	-1	
$\frac{\pi}{1}$	0	
4		
π	1	
2		
3π	+∞	
4	-	

