

MAT 1033 Bookmark

Slope of a line	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Slope-intercept	y = mx + b
form	
Point-slope form	$y-y_1=m(x-x_1)$ or
	$y = m(x - x_1) + y_1$
Slope of	$m_{1=} m_2$; parallel
relational lines	$m_2 = \frac{-1}{m_1}$; perpendicular
Quadratic	Given $ax^2+bx+c=0$;
formula	$-b \pm \sqrt{b^2 - 4ac}$
	$x = \frac{2a}{2a}$
Vertical line	x = a;
	Undefined slope
Horizontal line	y = b; Slope = 0
x-intercept	Let $y = 0$; $(f(x)=0, 0)$
y-intercept	Let $x = 0$; $(0, f(0))$

Geometry Formulas

Geometry I or maias	
Area rectangle	A = L W
Perimeter of rectangle	P = 2L + 2W
Area of circle	$A = \pi r^2$
Circumference of circle	$C = 2\pi r$
Volume of a cube	$V = s^3 \text{ or } LWH$

Math Translation Words

+ → Sum, increased by, addition, more than	x → Product, multiply, of
- → Difference, subtract,	÷ → Divide,
decreased by, less than	quotient
= → Equal, is	

*If
$$AB = 0$$
, then $A = 0$ or $B = 0$

*If
$$x^2 = k$$
, $k > 0$, then $x = \pm \sqrt{k}$

Exponent Rules

$m^a m^b = m^{a+b}$	$(m^a n^c)^b = m^{ab} n^{bc}$	
$\frac{m^a}{m^b} = m^{a-b}$	$m^{-a} = \frac{1}{m^a}$	
$m^0 = 1$	$\sqrt[b]{m^a} = m^{\frac{a}{b}}$	
n even, $\sqrt[n]{a^n} = a $	$n \text{ odd, } \sqrt[n]{a^n} = a$	
$i=\sqrt{-1}, i^2=-1$	$\sqrt{-m} = i\sqrt{m}$	

Factoring Summary					
GCF:	$3x^2 + 9x + 15 \rightarrow 3(x^2 + 3x + 5)$				
4 terms-	$3x^3 + 2x^2 - 6x - 4 =$				
grouping	$(3x^3 + 2x^2) + (-6x - 4) =$				
	$x^2(3x+2)-2(3x+2)$				
	$\rightarrow (3x+2)(x^2-2)$				
a = 1	$x^2 + 4x - 12$: find factors of				
	-12, add to 4, \rightarrow (x - 2)(x+6)				
x^2-y^2	(x-y)(x+y)				
$x^2 + y^2$	Does not factor/prime				
$ax^2 + bx + c$	$3x^2 + 2x - 8$:	(3,1) & (1,2,4,8)			
$a \neq 1$	factors of	$4 \cdot 1 - 3 \cdot 2 =$			
	3&8 that give	4 - 6= -2			
	difference of 2	$3x^2 + 2x - 8 \rightarrow$			
	24	(3x-4)(x+2)			
	1 24				
	2 12 3 B				
	4 6				
Perfect	$p^2 \pm 2pq + q^2$:	I			
squares	$4x^2 - 12x + 9 \rightarrow (2x - 3)^2$				

Factoring steps when solving quadratic:

- 1. Get the equation = 0
- 2. Factor out any common terms
- 3. Is it a difference of two squares?
- 4. Does it have 4 terms (grouping)
- 5. For a trinomial, use AC or trial/error.
- 6. Set all factors with a variable = 0 and solve.